• 欢迎来到北京明景科技有限公司

联系我们: 010-82378600, 13911129392

多维数据融合,后安防时代最热关键词


相关数据统计,预计2020年全球数据总量将达到44ZB,其中超过80%是非结构化数据。


繁多的数据种类、PB级的数据量、低价值密度的视频数据、快速的数据更新处理需求等,这些特性都预示着视图数据市场已经进入大数据时代。


近年来,随着各地智慧城市的大力建设,汇聚了海量以视频为核心的数据,催生对城市视频、图像、信息等多元数据的分析和应用需求。


如何针对海量监控视频数据进行多维感知接入、全网汇聚、存储、智能分析、多维融合碰撞及应用挖掘,成为重要的业务课题。


随着科技的发展和城市管理者对视频应用需求的不断提出,针对视频图像数据的多维大数据融合应用关键技术也在经历革新。


1、非结构化数据分析处理


安防行业中,视频图像等非结构化数据占到数据总量的95%以上。


长期以来,受限于传统产品的功能和处理能力,客户只能对视频、图片全量浏览查看,耗时费力。


目前,随着视频浓缩摘要、图片二次分析等新技术日渐成熟,以及各种视图智能识别算法的应用,已逐步支撑起非结构化数据的分析处理需求。


为了满足客户获取视频图像中的高价值结构化信息的新需求,需要优化甚至重新设计现有非结构化数据分析工具,提高其在各种新业务场景下的适应性。



2、云计算技术


进入大数据时代以来,客户对于搜索、布控的实时性以及吞吐量的要求都在不断提升。


以卡口系统为例,支持日过车500W已经成为基本要求,日过车2000W的城市也不在少数,这就使得系统单位时间内需要处理的数据量急剧增加。


对于视频等非结构化数据的处理,客户已经不满足于单纯单机烟囱式建设的传统系统,而是要求对单个文件也有极致的处理性能,并且能支持Scale-out方式按需提高性能。


对于过车记录、过人记录等结构化数据,以及图片二次识别后的特征向量数据,进行分析比对应用,同样需要高性能的计算能力支撑。


云计算具有天生的高扩展性,同时Spark、Hadoop等并行计算框架可以充分利用集群所有服务器的性能,将多台设备的计算资源虚拟化,对外提供统一的强大算力。


云计算技术是大数据时代非结构化数据分析,以及结构化数据分析比对应用的强力支撑。



3、多维大数据融合应用


两年前,只有一些大的厂家才开发了丰富的业务平台来实现多维大数据的融合应用,在实际的大项目中实现落地部署。


现在业内很多厂家都宣称已经有了自己的多维大数据平台,但是业务功能复杂性相对来讲差异还是比较大。


下一步要想在项目中取得领先,各厂家就必须要有多维大数据存储计算的基础平台和完备的端到端解决方案,体现综合的解决方案竞争实力。


多维大数据时代,信息流通和共享是关键,多维数据在被使用的过程中才能体现出它的价值。


对于海量非结构化数据及多种物联感知数据来说,极速的数据存取系统和开放的结构化处理系统,才能支持后续多维数据碰撞挖掘,保证其价值的最大化。